Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561536

RESUMO

The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38594559

RESUMO

Developing an optimal environmentally friendly bioremediation strategy for petroleum products is of high interest. This study investigated heavy fuel oil (HFO)-contaminated soil (4 and 6 g kg-1) remediation by individual and combined bioaugmentation-assisted phytoremediation with alfalfa (Medicago sativa L.) and with cold plasma (CP)-treated M. sativa. After 14 weeks of remediation, HFO removal efficiency was in the range between 61 and 80% depending on HFO concentration and remediation technique. Natural attenuation had the lowest HFO removal rate. As demonstrated by growth rate and biomass acquisition, M. sativa showed good tolerance to HFO contamination. Cultivation of M. sativa enhanced HFO degradation and soil quality improvement. Bioaugmentation-assisted phytoremediation was up to 18% more efficient in HFO removal through alleviated HFO stress to plants, stimulated plant growth, and biomass acquisition. Cold plasma seed treatment enhanced HFO removal by M. sativa at low HFO contamination and in combination with bioaugmentation it resulted in up to 14% better HFO removal compared to remediation with CP non-treated and non-bioaugmented M. sativa. Our results show that the combination of different remediation techniques is an effective soil rehabilitation strategy to remove HFO and improve soil quality. CP plant seed treatment could be a promising option in soil clean-up and valorization.

3.
Environ Pollut ; 349: 123978, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615839

RESUMO

Sustainable technologies for the recovery of rare earth elements (REE) from waste need to be developed to decrease the volume of ore mining extractions and its negative environmental consequences, while simultaneously restoring previously impacted lands. This is critical due to the extensive application of REE in everyday life from electronic devices to energy and medical technologies, and the dispersed distribution of REE resources in the world. REE recovery by plants has been previously studied but the feasibility of REE phytoextraction from a poorly soluble solid phase (i.e., nanoparticles) by different plant species has been rarely investigated. In this study, the effect of biostimulation and bioaugmentation on phytorecovery of REE nanoparticles (REE-NP) was investigated by exposing ryegrass seeds to REE-NP in hydroponic environments. This was studied in two sets of experiments: bioaugmentation (using CeO2 nanoparticles and Methylobacterium extorquens AM1 pure culture), and biostimulation (using CeO2 or Nd2O3 nanoparticles and endogenous microorganisms). Addition of M. extorquens AM1 in bioaugmentation experiment including 500 mg/L CeO2 nanoparticles could not promote the nanoparticles accumulation in both natural and surface-sterilized treatments. However, it enhanced the translocation of Ce from roots to shoots in sterile samples. Moreover, another REE-utilizing bacterium, Bacillus subtilis, was enriched more than M. extorquens in control samples (no M. extorquens AM1), and associated with 52% and 14% higher Ce extraction in both natural (165 µg/gdried-plant) and surface-sterilized samples (136 µg/gdried-plant), respectively; showing the superior effect of endogenous microorganisms' enrichment over bioaugmentation in this experiment. In the biostimulation experiments, up to 705 µg/gdried-plant Ce and 19,641 µg/gdried-plant Nd could be extracted when 500 mg/L REE-NP were added. Furthermore, SEM-EDS analysis of the surface and longitudinal cross-sections of roots in Nd2O3 treatments confirmed surface and intracellular accumulation of Nd2O3-NP. These results demonstrate stimulation of endogenous microbial community can lead to an enhanced REE phytoaccumulation.

4.
Environ Res ; 252(Pt 2): 118880, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582421

RESUMO

Persistent, aged hydrocarbons in soil hinder remediation, posing a significant environmental threat. While bioremediation offers an environmentally friendly and cost-effective approach, its efficacy for complex contaminants relies on enhancing pollutant bioavailability. This study explores the potential of immobilized bacterial consortia combined with biochar and rhamnolipids to accelerate bioremediation of aged total petroleum hydrocarbon (TPH)-contaminated soil. Previous research indicates that biochar and biosurfactants can increase bioremediation rates, while mixed consortia offer sequential degradation and higher hydrocarbon mineralization. The present investigation aimed to assess whether combining these strategies could further enhance degradation in aged, complex soil matrices. The bioaugmentation (BA) with bacterial consortium increased the TPHs degradation in aged soil (over 20% compared to natural attenuation - NA). However, co-application of BA with biochar and rhamnolipid higher did not show a statistically prominent synergistic effect. While biochar application facilitated the maintenance of hydrocarbon degrading bacterial consortium in soil, the present study did not identify a direct influence in TPHs degradation. The biochar application in contaminated soil contributed to TPHs adsorption. Rhamnolipid alone slightly increased the TPHs biodegradation with NA, while the combined bioaugmentation treatment with rhamnolipid and biochar increased the degradation between 27.5 and 29.8%. These findings encourage further exploration of combining bioaugmentation with amendment, like biochar and rhamnolipid, for remediating diverse environmental matrices contaminated with complex and aged hydrocarbons.

5.
Chemosphere ; 355: 141831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561162

RESUMO

The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds.


Assuntos
Lignina , Microbiota , Lignina/metabolismo , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Metano/metabolismo , Biocombustíveis
6.
Artigo em Inglês | MEDLINE | ID: mdl-38517632

RESUMO

The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.

7.
Front Microbiol ; 15: 1365289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550857

RESUMO

Low temperature is one of the limiting factors for anaerobic digestion in cold regions. To improve the efficiency of anaerobic digestion for methane production in stationary reactors under low-temperature conditions, and to improve the structure of the microbial community for anaerobic digestion at low temperatures. We investigated the effects of different concentrations of exogenous Methanomicrobium (10, 20, 30%) and different volumes of carbon fiber carriers (0, 10, 20%) on gas production and microbial communities to improve the performance of low-temperature anaerobic digestion systems. The results show that the addition of 30% exogenous microorganisms and a 10% volume of carbon fiber carrier led to the highest daily (128.15 mL/g VS) and cumulative (576.62 mL/g VS) methane production. This treatment effectively reduced the concentrations of COD and organic acid, in addition to stabilizing the pH of the system. High-throughput sequencing analysis revealed that the dominant bacteria under these conditions were Acidobacteria and Firmicutes and the dominant archaea were Candidatus_Udaeobacter and Methanobacterium. While the abundance of microorganisms that metabolize organic acids was reduced, the functional abundance of hydrogenophilic methanogenic microorganisms was increased. Therefore, the synergistic effect of Methanomicrobium bioaugmentation with carbon fiber carriers can significantly improve the performance and efficiency of low-temperature anaerobic fermentation systems.

8.
Environ Res ; 251(Pt 2): 118723, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490625

RESUMO

For better understanding the mechanism of microbial strains promoting methane production, four strains Hungatella xylanolytica A5, Bacillus licheniformis B1, Paraclostridium benzoelyticum C2 and Advenella faeciporci E1 were inoculated into anaerobic digestion systems. After bioaugmentation, the cumulative methane production of A5, B1, C2 and E1 groups elevated by 11.68%, 8.20%, 18.21% and 15.67% compared to CK group, respectively. The metagenomic analysis revealed that the species diversity and uniformity of the experimental groups was improved, and hydrolytic acidifying bacteria, represented by Clostridiaceae, Anaerolineaceae and Oscillospiraceae, and methanogens, such as Methanotrichaceae and Methanobacteriaceae, were enriched. Meanwhile, the abundance of key genes in carbohydrate, pyruvate and methane metabolism was increased in the inoculated groups, providing reasonable reasons for more methane production. The strengthening mechanism of microbial strains in this study offered a theoretical foundation for selecting a suitable bioaugmentation strategy to solve the problems of slow start-up and low methane production in anaerobic digestion.

9.
Bioresour Technol ; 399: 130565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461870

RESUMO

Producing caproic acid via carboxylate platform is an environmentally-friendly approach for treating lignocellulosic agricultural waste. However, its implementation is still challenged by low product yields and selectivity. A microbiome named cellulolytic acid-producing microbiome (DCB), proficient in producing cellulolytic acid, was successfully acquired and shows promise for producing high-level caproic acid. In this study, a bioaugmentation method utilizing Clostridium kluyveri is proposed to enhance caproic acid yield of DCB using rice straw. With exogenous ethanol, bioaugmentation with Clostridium kluyveri significantly improved the caproic acid concentration and selectivity by 7 times and 4.5 times, achieving 12.9 g/L and 55.1 %, respectively. The addition of Clostridium kluyveri introduced reverse ß-oxidation pathway, a more efficient caproic acid production pathway. Meanwhile, bioaugmentation enriched the bacteria proficient in degrading straw and producing short-chain fatty acids, providing more substrates for caproic acid production. This study provides potential bioaugmentation strategies for optimizing caproic acid yield from lignocellulosic biomass.


Assuntos
Caproatos , Clostridium kluyveri , Caproatos/metabolismo , Biomassa , Ácidos Graxos Voláteis/metabolismo , Clostridium kluyveri/metabolismo , Fermentação
10.
Sci Total Environ ; 926: 171900, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527552

RESUMO

The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support. The results show that direct inhibitory strategies including intermittent aeration and approximately 35 mg/L free ammonia had unusual weak inhibitory effects on NOB activity. Subsequently, the exogenous Anammox from sidestream employed as a competitive bio-augmentation approach rapidly inhibited NOB dynamics. Evidence suggests that the damaged hydroxyapatite granules under low pH conditions might have contributed to NOB dominance by diminishing Anammox bacteria activity, thereby creating a substrate-rich environment favoring NOB survival. In contrast, the introduction of exogenous Candidatus Kuenenia facilitated the nitrogen removal efficiency from 32.5 % to over 80 %. This coincided with a decrease in the relative abundance of Nitrospira from 16.5 % to 2.7 % and NOB activity from 0.34 to 0.07 g N/(g mixed liquor volatile suspended solid)/d. Metagenomic analysis reveals a decrease in the functional potential of most nitrite transport proteins, coupled with a significant increase in eukaryotic-like serine/threonine-protein kinase involved in cellular regulation, during the Anammox activity recovery. This study's findings reveal the feasibility of the bio-augmentation based on substrate competition, wherein sidestream processes support the mainstream PN/A integration, offering significant potential for practical applications.


Assuntos
Compostos de Amônio , Nitritos , Nitritos/metabolismo , Oxirredução , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nitrogênio/metabolismo , Esgotos/microbiologia , Compostos de Amônio/metabolismo
11.
Chemosphere ; 353: 141538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428533

RESUMO

In this work, the bioremediation of wastewater from the textile industry with indigo dye content was carried out using combined bioaugmentation, bioventilation, and biostimulation techniques. Initially, the inoculum was prepared by isolating the microorganisms from the textile wastewater in a 2 L bioreactor. Then, the respirometry technique was implemented to determine the affinity of the microorganisms and the substrate by measuring CO2 and allowed the formulation of an empirical mathematical model for the growth kinetics of the microorganism. Finally, the bioremediation was carried out in a 3 L bioreactor obtaining an indigo dye removal efficiency of 20.7 ± 1.2%, 24.0 ± 1.5%, and 29.7 ± 1.1% for equivalent wavelengths of 436 nm, 525 nm, and 620 nm. The chemical oxygen demand showed an average reduction of 88.9 ± 2.5%, going from 470.7 ± 15.6 to 52.3 ± 10.7 ppm after 30 days under constant agitation and aeration. A negative generalized exponential model was fitted to assess the affinity of the microorganism with the wastewater as a substrate by evaluating the production of CO2 during the bioremediation. Bioremediation techniques improve water discharge parameters compared to chemical treatments implemented in the industry, reducing the use of substances that can generate secondary pollution. Bioaugmentation, biostimulation, and bioventing of the textile wastewater in this study demonstrate the potential of these combined techniques to serve as an efficient alternative for indigo-contaminated wastewater in the textile industry.


Assuntos
Índigo Carmim , Águas Residuárias , Biodegradação Ambiental , Dióxido de Carbono , Têxteis , Indústria Têxtil
12.
Sci Total Environ ; 922: 171279, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428597

RESUMO

Kuwaiti hypersaline soil samples were contaminated with 5 % (w/w) weathered Kuwaiti light crude oil and bioaugmented with autochthonous halophilic hydrocarbonoclastic archaeal and bacterial strains, two each, individually and as consortia. Residual oil contents were determined, and microbial communities were analyzed by culture-dependent and culture-independent approaches initially and seasonally for one year. After one year of the bioremediation process, the mean oil degradation rate was similar across all treated soils including the controlled unbioaugmented one. Oil hydrocarbons were drastically reduced in all soil samples with values ranging from 82.7 % to 93 %. During the bioremediation process, the number of culturable oil-degrading bacteria increased to a range of 142 to 344 CFUx104 g-1 after 12 months of bioaugmentation. Although culture-independent analysis showed a high proportion of inoculants initially, none could be cultured throughout the bioremediation procedure. Within a year, microbial communities changed continually, and 33 species of halotolerant/halophilic hydrocarbonoclastic bacteria were isolated and identified belonged mainly to the three major bacterial phyla Actinobacteria, Proteobacteria, and Firmicutes. The archaeal phylum Halobacterota represented <1 % of the microbial community's relative abundance, which explains why none of its members were cultured. Improving the biodegradability of an already balanced environment by autochthonous bioaugmentation is more involved than just adding the proper oil degraders. This study emphasizes the possibility of a relatively large resistant population, a greater diversity of oil-degrading microorganisms, and the highly selective impacts of oil contamination on hypersaline soil bacterial communities.


Assuntos
Petróleo , Poluentes do Solo , Archaea/metabolismo , Biodegradação Ambiental , Solo , Microbiologia do Solo , Óleos , Bactérias/metabolismo , Petróleo/análise , Hidrocarbonetos/metabolismo , Poluentes do Solo/análise
13.
Front Microbiol ; 15: 1338842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468860

RESUMO

Introduction: Crop straw, a major by-product of agricultural production, is pivotal in maintaining soil health and preserving the ecological environment. While straw incorporation is widely recognized as a sustainable practice, the incomplete decomposition of crop residues poses challenges to plant growth, increasing the risk of pests and diseases. This necessitates a comprehensive investigation. Methods: The current study employs a 28-day pot experiment to simulate the degradation of rice straw in paddy soils. The impacts of bioaugmentation and biostimulation on lignocellulose degradation are systematically evaluated. Results: Results indicate a high lignocellulose degradation ability in paddy soil, with over 80% straw weight loss within 28 days. Bioaugmentation with a lignocellulolytic microbial consortium enhances straw degradation during the initial stage (0-14 days). In contrast, biostimulation with readily available nutrients leads to soil acidification, hindering straw degradation and reducing microbial diversity. Furthermore, pH emerges as a critical factor influencing microbial community stability and function during lignocellulose degradation. Microbial co-occurrence network analysis reveals that microorganisms occupy ecological niches associated with different cellulose components. Notably, Module M2, comprising Proteobacteria, Firmicutes, Gemmatimonadota, Actinobacteriota, Bacteroidota, Myxococcota, Halobacterota, and Acidobacteriota, positively correlates with pH and weight loss. Discussion: This study significantly advances our understanding of microbial mechanisms in soil decomposition, emphasizing the pivotal role of pH in community stability and function in paddy soil. These findings can inform future strategies for managing rice straw while safeguarding soil ecosystem health.

14.
Bioprocess Biosyst Eng ; 47(3): 429-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441647

RESUMO

Thauera is the most widely found dominant denitrifying genus in wastewater. In earlier study, MBBR augmented with a specially developed denitrifying five-membered bacterial consortium (DC5) where Thauera was found to be the most abundant and persistent genus. Therefore, to check the functional potential of Thauera in the removal of nitrate-containing wastewater in the present study Thauera sp.V14 one of the member of the consortium DC5 was used as the model organism. Thauera sp.V14 exhibited strong hydrophobicity, auto-aggregation ability, biofilm formation and denitrification ability, which indicated its robust adaptability short colonization and nitrate removal efficiency. Continuous reactor studies with Thauera sp.V14 in 10 L dMBBR showed 91% of denitrification efficiency with an initial nitrate concentration of 620 mg L-1 within 3 h of HRT. Thus, it revealed that Thauera can be employed as an effective microorganism for nitrate removal from wastewater based on its performance in the present studies.


Assuntos
Nitratos , Águas Residuárias , Thauera , Biofilmes , Desnitrificação , Reatores Biológicos/microbiologia , Nitrogênio
15.
Bioresour Technol ; 397: 130498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432542

RESUMO

Bioaugmentation is an efficient method for improving the efficiency of coking wastewater removal. Nevertheless, how different immobilization approaches affect the efficiency of bioaugmentation remains unclear, as does the corresponding mechanism. With the assistance of immobilized bioaugmentation strain Rhodococcus biphenylivorans B403, the removal of synthetic coking wastewater was investigated (drying agent, alginate agent, and absorption agent). The reactor containing the absorption agent exhibited the highest average removal efficiency of phenol (99.74 %), chemical oxygen demand (93.09 %), and NH4+-N (98.18 %). Compared to other agents, the covered extracellular polymeric substance on the absorption agent surface enhanced electron transfer and quorum sensing, and the promoted quorum sensing benefited the activated sludge stability and microbial regulation. The phytotoxicity test revealed that the wastewater's toxicity was greatly decreased in the reactor with the absorption agent, especially under high phenol concentrations. These findings showed that the absorption agent was the most suitable for wastewater treatment bioaugmentation.


Assuntos
Carvão Vegetal , Coque , Rhodococcus , Águas Residuárias , Fenol , Amônia , Regulação para Cima , Percepção de Quorum , Matriz Extracelular de Substâncias Poliméricas/química , Elétrons , Fenóis , Esgotos/química , Coque/análise
16.
Water Environ Res ; 96(3): e11005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407520

RESUMO

A comprehensive case study was undertaken at the Blue Plains wastewater treatment plant (WWTP) to explore the bioaugmentation technique of introducing nitrifying sludge into the non-nitrifying stage over the course of two operational years. This innovative approach involved the return of waste activated sludge (WAS) from the biological nutrient removal (BNR) system to enhance the nitrification in the high carbon removal rate system. The complete ammonia oxidizer (comammox) Nitrospira Nitrosa was identified as the main nitrifier in the system. Bioaugmentation was shown to be successful as nitrifiers returned from BNR were able to increase the nitrifying activity of the high carbon removal rate system. There was a positive correlation between returned sludge from the BNR stage and the specific total kjeldahl nitrogen (TKN) removal rate in A stage. The bioaugmentation process resulted in a remarkable threefold increase in the specific TKN removal rate within the A stage. Result suggested that recycling of WAS is a simple technique to bio-augment a low SRT system with nitrifiers and add ammonia oxidation to a previously non-nitrifying stage. The results from this case study hold the potential for applicable implications for other WWTPs that have a similar operational scheme to Blue Plains, allowing them to reuse WAS from the B stage, previously considered waste, to enhance nitrification and thus improving overall nitrogen removal performance. PRACTITIONER POINTS: Comammox identifying as main nitrifier in the B stage. Comammox enriched sludge from B stage successfully bio-augmented the East side of A stage up to threefold. Bioaugmentation of comammox in the West side of A stage was potentially inhibited by the gravity thickened overflow. Sludge returned from B stage to A stage can improve nitrification with a very minor retrofits and short startup times.


Assuntos
Amônia , Nitrificação , Biomassa , Esgotos , Carbono , Nitrogênio
17.
Ecotoxicol Environ Saf ; 273: 116156, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412631

RESUMO

Understanding the developmental characteristics of microbial communities in biofilms is crucial for designing targeted functional microbial enhancements for the remediation of complex contamination scenarios. The strong prioritization effect of microorganisms confers the ability to colonize strains that arrive first dominantly. In this study, the auto-aggregating denitrifying bacterial Pseudomonas stutzeri strain YC-34, which has both nitrogen and chromium removal characteristics, was used as a biological material to form a stable biofilm system based on the principle of dominant colonization and biofortification. The effect of the biofilm system on nitrogen and chromium removal was characterized by measuring the changes in the quality of influent and effluent water. The pattern of biofilm changes was analyzed by measuring biofilm content and thickness and characterizing extracellular polymer substances (EPS). Further analysis of the biofilm microbiota characteristics and potential functions revealed the mechanism of strain YC-34 biofortified biofilm. The results revealed that the biofilm system formed could achieve 90.56% nitrate-nitrogen removal with an average initial nitrate-nitrogen concentration of 51.9 mg/L and 40% chromium removal with an average initial hexavalent chromium Cr(VI) concentration of 7.12 mg/L. The biofilm properties of the system were comparatively analyzed during the biofilm formation period, the fluctuation period of Cr(VI)-stressed water quality, and the stabilization period of Cr(VI)-stressed water quality. The biofilm system may be able to increase the structure of hydrogen bonds, the type of protein secondary structure, and the abundance of amino acid-like components in the EPS, which may confer biofilm tolerance to Cr(VI) stress and allow the system to maintain a stable biofilm structure. Furthermore, microbial characterization indicated an increase in microbial diversity in the face of chromium stress, with an increase in the abundance of nitrogen removal-associated functional microbiota and an increasing trend in the abundance of nitrogen transfer pathways. These results demonstrate that the biofilm system is stable in nitrogen and chromium removal. This bioaugmentation method may provide a new way for the remediation of heavy metal-polluted water bodies and also provides theoretical and application parameters for the popularization and application of biofilm systems.


Assuntos
Desnitrificação , Nitratos , Nitratos/metabolismo , Nitrogênio/metabolismo , Cromo/metabolismo , Biofilmes , Bactérias/metabolismo
18.
J Hazard Mater ; 466: 133651, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309165

RESUMO

6:2 Fluorotelomer alcohol (FTOH), one of per- and polyfluoroalkyl substances (PFAS), is widely used as a raw material in synthesizing surfactants and fluorinated polymers. However, little is known about the role of root exudates on 6:2 FTOH biodegradation in the rhizosphere. This study examined the effects of root exudates produced from dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) grown under different nutrient conditions (nutrient-rich, sulfur-free, and potassium-free) on 6:2 FTOH biotransformation with or without bioaugmentating agent Rhodococcus jostii RHA1. All the exudates enhanced defluorination of 6:2 FTOH by glucose-grown RHA1. Amendment of dicot or monocot root exudates, regardless of the plant growth conditions, also enhanced 6:2 FTOH biotransformation in soil microcosms. Interestingly, high levels of humic-like substances in the root exudates are linked to high extents of 6:2 FTOH defluorination. Bioaugmenting strain RHA1 along with root exudates facilitated 6:2 FTOH transformation with a production of more diverse metabolites. Microbial community analysis revealed that Rhodococcus was predominant in all strain RHA1 spiked treatments. Different root exudates changed the soil microbiome dynamics. This study provided new insight into 6:2 FTOH biotransformation with different root exudates, suggesting that root exudates amendment and bioaugmentation are promising approaches to promote rhizoremediation for PFAS-contaminated soil.


Assuntos
Arabidopsis , Fluorocarbonos , Microbiota , Solo , Fluorocarbonos/análise , Substâncias Húmicas/análise , Arabidopsis/metabolismo , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo
19.
Environ Sci Technol ; 58(9): 4214-4225, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373236

RESUMO

Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.


Assuntos
Chloroflexi , Poluentes Ambientais , Ecossistema , Bactérias/genética , Respiração , Família Multigênica , Biodegradação Ambiental
20.
Chemosphere ; 352: 141467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387667

RESUMO

The increasing concern for environmental remediation has led to a search for effective methods to remove eutrophic nutrients. In this study, Methylobacterium gregans DC-1 was utilized to improve nitrogen removal in a sequencing batch biofilm reactor (SBBR) via aerobic denitrification. This bacterium has the extraordinary characteristics of strong auto-aggregation and a high ability to remove nitrogen efficiently, making it an ideal candidate for enhanced treatment of nitrogen-rich wastewater. This strain was used for the bioassessment of a test reactor (SBBRbio), which showed a shorter biofilm formation time compared to a control reactor (SBBRcon) without this strain inoculation. Moreover, the enhanced biofilm was enriched in TB-EPS and had a wider variety of protein secondary structures than SBBRcon. During the stabilization phase of SBBRbio, the EPS molecules showed the highest proportion of intermolecular hydrogen bonding. It is possible that bioaugmentation with this strain positively affects the structural stability of biofilm. At influent ammonia loadings of 100 and 150 mg. L-1, the average reduction of ammonia and nitrate-nitrogen was higher in the experimental system compared to the control system. Additionally, nitrite-N accumulation was lower and N2O production decreased compared to the control. Analysis of the microbial community structure demonstrated successful colonization in the bioreactor by a highly nitrogen-tolerant strain that efficiently removed inorganic nitrogen. These results illustrate the great potential of this type of denitrifying bacteria in the application of bioaugmentation systems.


Assuntos
Methylobacterium , Purificação da Água , Desnitrificação , Amônia , Nitrogênio , Biofilmes , Reatores Biológicos/microbiologia , Nitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...